首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4494篇
  免费   328篇
  国内免费   373篇
林业   161篇
农学   264篇
基础科学   48篇
  1721篇
综合类   1665篇
农作物   180篇
水产渔业   146篇
畜牧兽医   626篇
园艺   89篇
植物保护   295篇
  2024年   41篇
  2023年   153篇
  2022年   251篇
  2021年   271篇
  2020年   256篇
  2019年   254篇
  2018年   183篇
  2017年   276篇
  2016年   315篇
  2015年   248篇
  2014年   248篇
  2013年   341篇
  2012年   345篇
  2011年   298篇
  2010年   259篇
  2009年   240篇
  2008年   161篇
  2007年   202篇
  2006年   169篇
  2005年   123篇
  2004年   119篇
  2003年   82篇
  2002年   55篇
  2001年   50篇
  2000年   42篇
  1999年   46篇
  1998年   34篇
  1997年   24篇
  1996年   18篇
  1995年   9篇
  1994年   15篇
  1993年   10篇
  1992年   17篇
  1991年   10篇
  1990年   7篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1984年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
  1962年   1篇
  1956年   1篇
  1955年   1篇
排序方式: 共有5195条查询结果,搜索用时 15 毫秒
961.
Microbial control agents generally kill insects more slowly than chemical pesticides, and fast-moving migratory pests may not at first sight appear to offer the most promising targets for microbial control. Operators responsible for control may need to have recourse to chemical control agents. Nevertheless, there are many occasions when pests breed and feed outside the crop and a microbial control agent can be used. Similarly, immature stages may cause little damage and early treatment in the crop can avoid damage. Microbial control agents are particularly likely to be favoured if the pest breeds in a conservation area, and if a publicly-accountable agency is responsible for control.Other key points of importance are the IPM context, in particular detection, planning and forecasting of outbreaks and the role of natural enemies.With these points in mind, we identify several locust and grasshopper systems where microbial control is becoming established; additionally, Sunn pest of wheat and Armyworm are identified as promising situations forbreak microbials.  相似文献   
962.
In order to clarify the effects of tree species on organic matter dynamics in soil, we investigated the amount of forest floor material, leaf litter decomposition rate, soil chemical characteristics, soil respiration rate and cellulose decomposition rate in a Japanese cedar forest (cedar plot) and an adjacent Japanese red pine forest (pine plot) established on a flatland. The amount of forest floor material in the cedar plot was 34.5 Mg ha−1 which was greater than that in the pine plot. Because the leaf litter decomposition rate was higher in the pine plot than in the cedar plot, it is likely that the difference in the amount of forest floor material between the plots is caused by the difference in the leaf litter decomposition rate. The C concentrations of soil in the cedar plot were 1.2–2.1 times higher than those in the pine plot. Soil pH(H2O)s in the cedar plot were significantly higher than those in the pine plot. The soil respiration rates and the rates of mineralized C in the cedar plot byin vitro incubation were higher than those in the pine plot. From this result, it is assumed that soil organic matter in the cedar plot was decomposed relatively faster compared with the pine plot. Furthermore, microbial activities, which were reflected as cellulose decomposition rates in the cedar plot, were higher than those in the pine plot. A part of this paper was presented at the 109th Annual Meeting of the Japanese Forestry Society (1998).  相似文献   
963.
Quality of agricultural soils is largely a function of soil organic matter. Tillage and crop management impact soil organic matter dynamics by modification of the soil environment and quantity and quality of C input. We investigated changes in pools and fluxes of soil organic C (SOC) during the ninth and tenth year of cropping with various intensities under conventional disk-and-bed tillage (CT) and no tillage (NT). Soil organic C to a depth of 0.2 m increased with cropping intensity as a result of greater C input and was 10% to 30% greater under NT than under CT. Sequestration of crop-derived C input into SOC was 22±2% under NT and 9±4% under CT (mean of cropping intensities ± standard deviation of cropping systems). Greater sequestration of SOC under NT was due to a lower rate of in situ soil CO2 evolution than under CT (0.22±0.03 vs. 0.27±0.06 g CO2–C g−1 SOC yr−1). Despite a similar labile pool of SOC under NT than under CT (1.1±0.1 vs. 1.0±0.1 g mineralizable C kg−1 SOC d−1), the ratio of in situ to potential CO2 evolution was less under NT (0.56±0.03) than under CT (0.73±0.08), suggesting strong environmental controls on SOC turnover, such as temperature, moisture, and residue placement. Both increased C sequestration and a greater labile SOC pool were achieved in this low-SOC soil using NT and high-intensity cropping.  相似文献   
964.
PAH decrease in soil samples from different polluted industrial sites by activating the autochthonous microflora In pot experiments under field conditions the PAH decrease in ten different soil samples from former industrial sites with differing PAH load were investigated over a period of 74 and 168 weeks. 15 out of 16 PAH according to US EPA (without acenaphthylene) were determined. Easily degradable organic matter, mineral fertilizers, synthetic surfactants and in some experiments also lime were added to the soil samples in varying amounts. Depending on the nature and quantity of the amendments, the biological activity and (co-)metabolic decomposition of PAH by soil microorganisms could considerably be increased. In the different soil samples a decrease of the initial PAH contents between 12 and 90% was achieved within 74 weeks. Even from 74 up to 168 weeks for some soil samples a remarkable further decrease of the PAH contents could be observed. The decrease of the extractable PAH with time is mainly caused by microbial decomposition and formation of nonextractable residues. This behavior can be fitted by two coupled exponential functions, one for an initial phase of rapid decomposition and the other for a subsequent phase of slow decomposition. Therefore, two different processes (I, II) determine the decrease of PAH. In the first week of the experiment the decomposition rates for process I amount to 4.2–88.3 and for process II to 0.06–5.3 mg PAH ? kg?1 soil ? week?1; in the 168th week they are no longer determinable for process I and amount to 0.05–2.3 mg ? kg?1 ? week' for process II. Higher initial PAH contents often led to higher relative PAH decreases, but also to absolute higher contents of residues. The persistence of PAH is mainly determined by their bioavailability. PAH degradation is increased by the soil treatments. The addition of easily degradable organic matter (C/N ratio < 20) in a quantity of 30g ? kg?1 (w/w) combined with the addition of nitrate and a surfactant most effectively increased the degradation of PAH. Raising the pH of a very strongly acidic soil sample revealed a maximum PAH decomposition at a pH of 6.  相似文献   
965.
Field and pot experiments showed that the P demand of wheat is highest in early stages of growth (up to 1.67 μg P per cm2 root surface and day). The needed orthophosphate ions H2PO4? and HPO42-move from soil to the root by diffusion. This process is controlled by the concentration gradient of the diffusible phosphate and the effective diffusion coefficient according to Pick's first law. Root excretions (rhizodeposition) are able to affect both characteristics. The water soluble portion of rhizodeposition contains more than 50% of up to 8 different sugars, 10–40% carboxylic acids and 10–15 amino acids and amides. The composition varies in dependence on the age of the root parts and on nutrition (Zea mays L., Brassica napus L., Pisum sativum L.). Diffusion experiments using small soil blocks showed that 50–75% of the root exudates were decomposed by respiration within 3 days. The rest was largely chemically converted. Originally present sugars disappeared. Due to the biosynthesis of different organic acids from the individual sugars the mobilisation of Ca3(PO4)2 by Pantoea agglomerans increased when the sugar mixture was derived from the rhizodeposition of P deficient plants with more pentoses instead of glucose and fructose (mainly effect of anions). In the rhizosphere therefore a mixture of rhizodeposition and its conversion products exists which affects the binding of phosphorus in soil and the P transport to the root. This should be considered both for the development of new soil extractants and for modelling the P supply to plants.  相似文献   
966.
Enzyme activities play an important role for the transformation of elements and compounds in soil and, thus, were extensively analyzed for more than 4 decades. The activity of any enzyme in soil may not only be controlled by active organisms. Substantial parts of ‘extracellular’ enzymes may be stabilized by abiotic soil components maintaining their activity. Methods to discriminate the source of enzyme activity were summarized with emphasis on the approach plotting enzyme activity versus a feature integrating the microbial biomass after the addition of glucose and nitrate. Considering the quotient between enzyme activity and microbial biomass content, protease activity will be discussed with reference to nitrogen transformation in soils.  相似文献   
967.
国外微生物除草剂的研究及应用现状   总被引:13,自引:0,他引:13  
主要有9个属的真菌和7个属的细菌有除草潜能,其中研究和报道最多的是真菌。已开发成功的4种商品化制剂和两种处于试用阶段的制剂都是真菌产品。在开发微生物除草剂的限制因素中,有4种因素起主要作用。  相似文献   
968.
采用连续培养系统的12个发酵罐进行2次培养试验,研究瘤胃稀释率(D)对于活体外蛋白质发酵和微生物生长效率的影响。6个瘤胃稀释率分别为每小时发酵液流出量占发酵罐体积的0.025,0.050,0.075,0.100,0.150和0.200倍。以大豆提取蛋白为试验日粮,随着D的提高,饲料干物质、有机物质和粗蛋白真消化率均呈二次曲线趋势下降。提高D导致发酵液pH值提高,NH#-3和挥发性脂肪酸(VFA)浓度下降。每个VFA摩尔比例随D的改变而变化,并表现出蛋白质发酵特征。微生物N日产生量和微生物生长效率随D的提高而显著提高。蛋白质发酵的最大微生物生长效率为每千克可消化有机物合成微生物N 71.4g,其相对应的D为0.207/h。二次曲线模型适合于描述微生物生长效率。  相似文献   
969.
阿维菌素在水库中的微生物降解   总被引:1,自引:0,他引:1  
研究了阿维菌素在水库水中的微生物降解。结果显示:阿维菌素在未灭菌水库水中的降解速率明显快于灭菌水,且30℃比20℃更适合微生物降解;阿维菌素对水库水中细菌的生长有一定刺激作用,对放线菌和真菌的生长影响不明显;利用选择性培养基,对三种优势细菌进一步培养和鉴定后推测,阿维菌素在水库水中的降解细菌主要是假单胞菌和芽孢杆菌。  相似文献   
970.
采用盐度变化法将已建立完全硝化功能的淡水生物过滤器驯化为具完全硝化功能的海水生物过滤器。在水温25℃的培养条件下,用盐度25的海水直接培养生物过滤器,建立完整硝化功能需70d;先用淡水培养生物过滤器,待硝化作用完全建立后,用盐度25的海水驯化,则建立完整硝化功能的海水生物过滤器需要61d;将已经建立完整功能的淡水生物过滤器,先用盐度10的海水驯化,待建立完整硝化功能后,再用盐度25的海水驯化,则建立完整硝化功能的海水生物过滤器共需要56d。运用PCR-DGGE技术分析盐度冲击前后生物膜细菌群落结构的变化,运用荧光素-荧光素酶法检测盐度冲击前后生物膜微生物ATP含量变化。结果表明,经盐度冲击后,生物膜的细菌群落结构发生了明显变化,优势菌群由β-变形菌纲细菌和δ-变形菌纲(Delta proteobacteria)细菌转变成γ-变形菌纲和α-变形菌纲细菌;盐度冲击24h后,生物膜微生物ATP总量分别下降了17.4%(盐度15)和47.7%(盐度25)。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号